Thursday, August 20, 2009

How to find critical points for an equation

In calculus, a critical point of a function of a real variable is any value in the domain where either the function is not differentiable or its derivative is 0. The value of the function at a critical is a critical value of the function. These definitions admit generalizations to functions of several variables, differentiable maps between Rm and Rn, and differentiable maps between differentiable manifolds.

Lets see a problem from calculus help with probability problems,which explains us
more about this .

Question:-

f(x)=3x4-4x3-12x2+6

Differentiating with respect to x

Solution:-

f'(x)=12x3-12x2-24x

we know f'(x)=0 ,so

12x3-12x2-24x=0

12x(x2-x-2)=0

12x(x2-2x+x-2)=0

12x(x-2)(x+1) = 0

x(x-2)(x+1) = 0

Now we use the zero product property ,which states that
if ab=0 ,then a=0 and b=0,this property is from geometry terms and definitions .

so x=0 (x-2)=0 (x+1)=0

x=0 x=2 x=-1

Therefore,x=0,-1,2 are the critical points for y=f(x)

Wednesday, August 19, 2009

Simple Algebraic Equation Problem

Topic: Algebraic Equation

An equation is a mathematical statement, in symbols, that two things are exactly the same . Equations are written with an equal sign, as in
2 + 3 = 5
9 - 2 = 7
The equations above are examples of an equality: a proposition which states that two constants are equal. Equalities may be true or false
How to solve Equations ?
Its simple.Here is a example of 7th grade math equations :