Thursday, August 13, 2009

Solving a integral problem by using substitution method

Topic:- Integration

Integration is an important concept together with differentiation, forms one of the main operations in calculus help
Given a function ƒ of a real variable x and an interval [a, b] of the real line, the definite integral
\int_a^b f(x)\,dx \, ,
is defined informally to be the net signed area of the region in the xy-plane bounded by the graph of ƒ, the x-axis, and the vertical lines x = a and x = b.

Let's work out a simple example on this.
Question:-

solve ∫ ( x / √x2-9 )

Answer:-

We do it by substitution method.
 Let u = x2-9
    
    du
    ---- = 2x
    dx
 
   du
or ---- = xdx
   2
substituting these values ,the integral becomes

∫ (du/2) / √u

= 1/2 ∫ (u)-1/2 du

        (u)-1/2 + 1
= 1/2 ---------------
         -1/2 + 1
by equalizing the denominators
   
    -1+2
   ------- = 1/2
      2
So the integral becomes
    
        (u)1/2
= 1/2 ---------------   + c
         1/2

= (x2-9)1/2+C (as u =x2-9)

= √( x2-9 ) +c  is the Answer

For more help on this ,you can reply me .

No comments:

Post a Comment